108 research outputs found

    An energy efficient void avoidance opportunistic routing protocol for underwater sensor

    Get PDF
    Underwater sensor network is an emerging technology due to its numerous applications in aqueous environments. However, limitations of these networks include limited bandwidth, high propagation delays and power constraints. Hence, new routing protocols must be designed specifically for USN. Opportunistic routing offers a promising method to overcome these limitations. The proposed protocol is a novel energy-efficient void avoidance opportunistic routing algorithm. The protocol deals with the issue of void holes during transmission while reducing energy consumption and keeping the packet delivery ratio at a satisfactory level. To evaluate the performance, two common metrics have been used for routing protocols in USNs; energy consumption and packet delivery ratio. Simulations were carried out in ns2 with Aqua-Sim. The performance of the proposed routing protocol is compared to VAPR. The performance evaluation of EEVA-OR indicate its benefit as compared to VAPR in terms of void detection, energy consumption and packet delivery ratio

    Survey on end to end congestion control techniques in different network scenarios

    Get PDF
    Most of the traffic on the Internet is depend upon the Transmission Control Protocol (TCP), so the performance of TCP is directly related to Internet. Many TCP variants are developed and modified according to the environment and communication needs. Most of current TCP variants have set of algorithms which control the congestion in critical situations and maintain the throughput and efficiency of network. Now a day’s TCP is facing fast growth of Internet with the demands of faster data communication techniques on high speed links. In last 15 years many computer systems and cellular networks become linked together with protocol stack used in TCP. TCP variants with different congestion control techniques are working in different operating systems but a very small number of techniques are able to minimize the congestion in the network. This paper presents a survey on end-to-end congestion control techniques used in different TCP versions. The main purpose of this study is to review the characteristics and behavior of TCP variants with different techniques to control the congestion in the different network scenarios

    RSA authentication mechanisms in control grid computing environment using Gridsim toolkit

    Get PDF
    There are security concerns when our sensitive data is placed in the third party infrastructure such as in the Grid Computing environment. As such, it is difficult to be assured that our data is in the safe hands.Thus, authentication has become the most critical factor pertaining to this.There are several approaches has been discussed in the grid computing environment on the safeguard, scalable and efficient authentication that are either Virtual Organization centric or Resource centric.Most of the grid computing uses public key infrastructure (PKI) to secure the identification, but the vulnerability are still cannot be avoid. In order to satisfy the security need of grid computing environment, we design an alternative authentication mechanism using RSA algorithm to ensure the user identification, and carry out the experiment in the Gridsim toolkit simulator

    3D scientific data mining in ion trajectories

    Get PDF
    In physics, structure of glass and ion trajectories are essentially based on statistical analysis of data acquired through experimental measurement and computer simulation. Invariably, the details of the structure-transport relationships in the data have been mistreated in favour of ensemble average. In this study, we demonstrate a visual approach of such relationship using surface-based visualisation schemes. In particular, we demonstrate a scientific datasets of simulated 3D time-varying model and examine the temporal correlation among ion trajectories. We propose a scheme that uses a three dimensional visual representation with colour scale for depicting the timeline events in ion trajectories and this scheme could be divided into two major part such as global and local time scale. With a collection of visual examples from this study, we demonstrate that this scheme may offer an effective tool for visually mining 3D timeline events of the ion trajectories. This work will potentially form a basis of a novel analysis tool for measuring the effectiveness of visual representation to assist physicist in identifying possible temporal association among complex and chaotic atom movements in ion trajectories

    Current perspective of symbiotic organisms search technique in cloud computing environment: a review

    Get PDF
    Nature-inspired algorithms in computer science and engineering are algorithms that take their inspiration from living things and imitate their actions in order to construct functional models. The SOS algorithm (symbiotic organisms search) is a new promising metaheuristic algorithm. It is based on the symbiotic relationship that exists between different species in an ecosystem. Organisms develop symbiotic bonds like mutualism, commensalism, and parasitism to survive in their environment. Standard SOS has since been modified several times, either by hybridization or as better versions of the original algorithm. Most of these modifications came from engineering construction works and other discipline like medicine and finance. However, little improvement on the standard SOS has been noticed on its application in cloud computing environment, especially cloud task scheduling. As a result, this paper provides an overview of SOS applications in task scheduling problem and suggest a new enhanced method for better performance of the technique in terms of fast convergence speed

    Big data acquired by Internet of Things-enabled industrial multichannel wireless sensors networks for active monitoring and control in the smart grid industry 4.0

    Get PDF
    Smart Grid Industry 4.0 (SGI4.0) defines a new paradigm to provide high-quality electricity at a low cost by reacting quickly and effectively to changing energy demands in the highly volatile global markets. However, in SGI4.0, the reliable and efficient gathering and transmission of the observed information from the Internet of Things (IoT)-enabled Cyber-physical systems, such as sensors located in remote places to the control center is the biggest challenge for the Industrial Multichannel Wireless Sensors Networks (IMWSNs). This is due to the harsh nature of the smart grid environment that causes high noise, signal fading, multipath effects, heat, and electromagnetic interference, which reduces the transmission quality and trigger errors in the IMWSNs. Thus, an efficient monitoring and real-time control of unexpected changes in the power generation and distribution processes is essential to guarantee the quality of service (QoS) requirements in the smart grid. In this context, this paper describes the dataset contains measurements acquired by the IMWSNs during events monitoring and control in the smart grid. This work provides an updated detail comparison of our proposed work, including channel detection, channel assignment, and packets forwarding algorithms, collectively called CARP [1] with existing G-RPL [2] and EQSHC [3] schemes in the smart grid. The experimental outcomes show that the dataset and is useful for the design, development, testing, and validation of algorithms for real-time events monitoring and control applications in the smart grid

    FFRP: Dynamic firefly mating optimization inspired energy efficient routing protocol for internet of underwater wireless sensor networks

    Get PDF
    Energy-efficient and reliable data gathering using highly stable links in underwater wireless sensor networks (UWSNs) is challenging because of time and location-dependent communication characteristics of the acoustic channel. In this paper, we propose a novel dynamic firefly mating optimization inspired routing scheme called FFRP for the internet of UWSNs-based events monitoring applications. The proposed FFRP scheme during the events data gathering employs a self-learning based dynamic firefly mating optimization intelligence to find the highly stable and reliable routing paths to route packets around connectivity voids and shadow zones in UWSNs. The proposed scheme during conveying information minimizes the high energy consumption and latency issues by balancing the data traffic load evenly in a large-scale network. In additions, the data transmission over highly stable links between acoustic nodes increases the overall packets delivery ratio and network throughput in UWSNs. Several simulation experiments are carried out to verify the effectiveness of the proposed scheme against the existing schemes through NS2 and AquaSim 2.0 in UWSNs. The experimental outcomes show the better performance of the developed protocol in terms of high packets delivery ratio (PDR) and network throughput (NT) with low latency and energy consumption (EC) compared to existing routing protocols in UWSNs

    QoSRP: A cross-layer QoS channel-aware routing protocol for the internet of underwater acoustic sensor networks

    Get PDF
    Quality of service (QoS)-aware data gathering in static-channel based underwater wireless sensor networks (UWSNs) is severely limited due to location and time-dependent acoustic channel communication characteristics. This paper proposes a novel cross-layer QoS-aware multichannel routing protocol called QoSRP for the internet of UWSNs-based time-critical marine monitoring applications. The proposed QoSRP scheme considers the unique characteristics of the acoustic communication in highly dynamic network topology during gathering and relaying events data towards the sink. The proposed QoSRP scheme during the time-critical events data-gathering process employs three basic mechanisms, namely underwater channel detection (UWCD), underwater channel assignment (UWCA) and underwater packets forwarding (UWPF). The UWCD mechanism finds the vacant channels with a high probability of detection and low probability of missed detection and false alarms. The UWCA scheme assigns high data rates channels to acoustic sensor nodes (ASNs) with longer idle probability in a robust manner. Lastly, the UWPF mechanism during conveying information avoids congestion, data path loops and balances the data traffic load in UWSNs. The QoSRP scheme is validated through extensive simulations conducted by NS2 and AquaSim 2.0 in underwater environments (UWEs). The simulation results reveal that the QoSRP protocol performs better compared to existing routing schemes in UWSNs

    A review current routing attacks in mobile ad-hoc networks

    Get PDF
    A mobile ad-hoc network (MANET) is a dynamic wireless network that can be formed without any pre-existing infrastructure in which each node can act as a router. MANET has no clear line of defense, so, it is accessible to both legitimate network users and malicious attackers. In the presence of malicious nodes, one of the main challenges in MANET is to design the robust security solution that can protect MANET from various routing attacks. Different mechanisms have been proposed using various cryptographic techniques to countermeasure the routing attacks against MANET. However, these mechanisms are not suitable for MANET resource constraints, i.e., limited bandwidth and battery power, because they introduce heavy traffic load to exchange and verifying keys. In this paper, the current security issues in MANET are investigated. Particularly, we have examined different routing attacks, such as flooding, blackhole, link spoofing, wormhole, and colluding misrelay attacks, as well as existing solutions to protect MANET protocols
    corecore